Skew group algebras of deformed preprojective algebras

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lecture 17: Deformed Preprojective Algebras

(1) If there is an indecomposable representation of dimension v, then v is a root. (2) If v is a real root, then there is a unique (up to an isomorphism) indecomposable representation of dimension v. (3) If v is primitive (meaning that GCD(vi) = 1) and there is an indecomposable representation of dimension v, then pv, the number of parameters for the isomorphism classes of indecomposable repres...

متن کامل

Generalisations of Preprojective algebras

In this thesis, we investigate two ways of generalising the preprojective algebra. First, we introduce the multiplicative preprojective algebra, Λ(Q), which is a multiplicative analogue of the deformed preprojective algebra, introduced by Crawley-Boevey and Holland. The special case q = 1 is the undeformed multiplicative preprojective algebra, which is an analogue of the ordinary (undeformed) p...

متن کامل

Skew group algebras of piecewise hereditary algebras are piecewise hereditary

The aim of this paper is twofold. First, we show that the main results of HappelRickard-Schofield (1988) and Happel-Reiten-Smalø (1996) on piecewise hereditary algebras are coherent with the notion of group action on an algebra. Then, we take advantage of this compatibility and show that if G is a finite group acting on a piecewise hereditary algebra A over an algebraically closed field whose c...

متن کامل

Preprojective Algebras and Mv Polytopes

The purpose of this paper is to apply the theory of MV polytopes to the study of components of Lusztig’s nilpotent varieties. Along the way, we introduce reflection functors for modules over the non-deformed preprojective algebra of a quiver.

متن کامل

Deformed Commutators on Quantum Group Module-algebras

We construct quantum commutators on module-algebras of quasitriangular Hopf algebras. These are quantum-group covariant, and have generalized antisymmetry and Leibniz properties. If the Hopf algebra is triangular they additionally satisfy a generalized Jacobi identity, turning the modulealgebra into a quantum-Lie algebra. The purpose of this short communication is to present a quantum commutato...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 2011

ISSN: 0021-8693

DOI: 10.1016/j.jalgebra.2011.02.007